什么叫任意常数(定积分的定义是什么)
定积分的定义:是函数f(x)在区间[a,b]上的积分和的极限。
定积分的定义解析
定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系,一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而不存在不定积分。

定积分的分类
不定积分
即已知导数求原函数。若F’(x)= f(x),那么[F(x)+C]'= f(x),(C∈R,c属于常数)也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。所以一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无限多个原函数。
定积分
定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。即由y=0,x=a,x=b,y= f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。

定积分的常用积分法
换元积分法
如果f(x)∈c([a,b]);x=ψ(t)在[a,β]上单值可导;当a≤t≤β时,a≤ψ(t)≤b,且ψ(a)=a,ψ(β)=b,则∫ba f(x)dx=∫βa f(ψ(t))ψ’(t)dt
定积分的分点问题
定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,人们用等差级数分点,即相邻两端点的间距Δx是相等的。但是必须指出,即使Δx不相等,积分值仍然相同。





